Variability of African Easterly Waves and their relationship with Atlantic Tropical Cyclones

Chris Thorncroft
Department of Atmospheric and Environmental Sciences
University at Albany

Acknowledgement: This research has been funded by NASA, NOAA and NSF
Variability of African Easterly Waves

(1) Background

(2) Variability in AEW Structures and their relationship to tropical cyclones

(3) Intraseasonal Variability of AEW-activity and its relationship to tropical cyclones

(4) Summary
The Coupled Monsoon System

Key features of the WAM Climate System during Boreal summer

- SAL
- Heat Low
- AEJ
- ITCZ
- Cold Tongue
Key Weather Systems

- AEWs
- MCSs
- SAL
- TC

Diagram showing the distribution of these weather systems over a geographic area.
Bonnie (05)

Charlie (05)

Frances (05)

Ivan (05)

Ivan close to the Yucatan

courtesy A. Aiyyer
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m2) at 10°N, 10°W for June-September 1979-1993

Day 0

Streamfunction (contours 1 X 105 m2 s$^{-1}$)

Wind (vectors, largest around 2 m s$^{-1}$)

OLR (shading starts at +/- 6 W s$^{-2}$), negative blue

Kiladis, Thorncroft, Hall (2006)
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m2) at 10$^\circ$N, 10$^\circ$W for June-September 1979-1993

Day-4

Streamfunction (contours 1 X 105 m2 s$^{-1}$)

Wind (vectors, largest around 2 m s$^{-1}$)

OLR (shading starts at +/- 6 W s$^{-2}$), negative blue

Kiladis, Thorncroft, Hall (2006)
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m2) at 10°N, 10°W for June-September 1979-1993

Day-3

Streamfunction (contours 1 X 105 m2 s$^{-1}$)
Wind (vectors, largest around 2 m s$^{-1}$)
OLR (shading starts at +/- 6 W s$^{-2}$), negative blue

Kiladis, Thorncroft, Hall (2006)
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m2) at 10°N, 10°W for June-September 1979-1993

Streamfunction (contours 1 X 105 m2 s$^{-1}$)
Wind (vectors, largest around 2 m s$^{-1}$)
OLR (shading starts at +/- 6 W s$^{-2}$), negative blue

Kiladis, Thornicroft, Hall (2006)
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m\(^2\)) at 10°N, 10°W for June-September 1979-1993

Day-1

Streamfunction (contours 1 X 10^5 m\(^2\) s\(^{-1}\))

Wind (vectors, largest around 2 m s\(^{-1}\))

OLR (shading starts at +/- 6 W s\(^{-2}\)), negative blue

Kiladis, Thorncroft, Hall (2006)
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m²) at 10°N, 10°W for June-September 1979-1993

Day 0
Streamfunction (contours 1 X 10⁵ m² s⁻¹)
Wind (vectors, largest around 2 m s⁻¹)
OLR (shading starts at +/- 6 W s⁻²), negative blue

Kiladis, Thorncroft, Hall (2006)
Importance of Guinea Highlands

- Marked transition takes place close to Guinea Highlands and Coastal region

- AEWs are often invigorated as they pass these regions – especially at low-levels

- May influence tropical cyclogenesis probabilities

Fouta Djallon Highlands ~914m

The Nambia Range ~460m
Composites of East Atlantic Developing and Non-Developing AEWs (1979-2001)

Importance of Guinea Highlands

Developing (33) Non-Developing (512)

Hopsch, Thorncroft and Tyle 2009
Composites of East Atlantic Developing and Non-Developing AEWs (1979-2001)

Importance of Guinea Highlands

Hopsch, Thornicroft and Tyle 2009
Developers Non-Developers

Day -2

850hPa Rel. Vort. [10^{-5}s^{-1}]

925hPa Streamlines (Grey)

700hPa Streamlines (Black)

Objective Mean Trough Locations (Thick Black Contours)

Brammer and Thorncroft (2014)
Day 0
Developing Non-developing

850hPa Rel. Vort

850hPa q [g/kg]
Wave Relative flow

Brammer and Thorncroft (2014)
3. Variability in African Easterly Wave Activity
Approach taken here is to consider impact of known phenomena on AEW-activity.

MJO has a coherent relationship with AEW-activity (measured by EKE):
 Ventrice, Thorncroft and Roundy, 2012
 Alaka and Maloney, 2013

Convectively Coupled Kelvin Waves can impact convection and AEWs:
 Ventrice, Thorncroft and Roundy, 2012
 Ventrice and Thorncroft, 2013
Variability in African Easterly Wave Activity - MJO

Ventricce et al, 2012
Variability in African Easterly Wave Activity - MJO

RMM Phase 1

RMM Phase 2

RMM Phase 3

RMM Phase 4

RMM Phase 5

RMM Phase 6

RMM Phase 7

RMM Phase 8
Unfiltered OLR, Kelvin-filtered OLR and 850 hPa wind anomalies

Key:

• Unfiltered total OLR field (Shaded)
• Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
• Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Key:

- Unfiltered total OLR field (Shaded)
- Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Key:
- Unfiltered total OLR field (Shaded)
- Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Unfiltered OLR, Kelvin-filtered OLR and 850 hPa wind anomalies

Key:
• Unfiltered total OLR field (Shaded)
• Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
• Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Key:

- Unfiltered total OLR field (Shaded)
- Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Unfiltered OLR, Kelvin-filtered OLR and 850 hPa wind anomalies

Key:

• Unfiltered total OLR field (Shaded)
• Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
• Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Unfiltered OLR, Kelvin-filtered OLR and 850hPa wind anomalies

Key:
- Unfiltered total OLR field (Shaded)
- Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Unfiltered OLR, Kelvin-filtered OLR and 850hPa wind anomalies

Key:

• Unfiltered total OLR field (Shaded)
• Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
• Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Unfiltered OLR, Kelvin-filtered OLR and 850 hPa wind anomalies

Key:
- Unfiltered total OLR field (Shaded)
- Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Unfiltered total OLR field (Shaded)

Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level

Positive (Negative) Kelvin filtered OLR anomalies

850 hPa wind anomalies (Vectors)
Unfiltered OLR, Kelvin-filtered OLR and 850hPa wind anomalies

Key:

• Unfiltered total OLR field (Shaded)
• Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
• Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Unfiltered OLR, Kelvin-filtered OLR and 850hPa wind anomalies

Key:

- Unfiltered total OLR field (Shaded)
- Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)
Variability in African Easterly Wave Activity - CCKWs

Shading: Kelvin filtered brightness temperature (Tb) anomalies

Contours: Tropical Depression type wave filtered Tb anomalies

- AEW wave train develops after the passage of convectively active phase of a CCKW.
- AEWs initiate (or amplify) east of one another

from Mekonnen et al. 2008
Shading: 700 hPa EKE anomalies (contoured if statistically different than zero at the 90% level)

Bold Black Contours: Kelvin filtered OLR anomalies (dashed if negative)
Tropical cyclogenesis relative to the Kelvin wave

AEW-CCKW-TC Relationships
Regional Variations in AEW Structure

- There are marked variations in AEW structures as they propagate between the African continent and the ocean.

- AEWs intensify and develop low level circulations as they pass the Guinea Highlands and coastal region.

- Variability in these processes likely impacts probability of tropical cyclogenesis.

- The most important differentiator between favorable AEWs that develop and those that do not is the presence (or not) of moist air at low-levels ahead of the AEW.
Variability in AEW Activity

• There is marked sub-seasonal variability in AEW activity.

• The MJO influences AEW-activity.

• This talk has highlighted the role of Convectively Coupled Kelvin Waves in generating such variability.

• CCKW-AEW interactions can influence the probability of rainfall over the African continent and tropical cyclogenesis in the tropical Atlantic.
Favourable characteristic based on wave climatology
CFSR 1979-2012

Top 33%

Mid 33%

Bottom 33%

PW - Precipitable Water
W - Vertical Velocity (700-400hPa)
RV - Relative Vorticity (900-600hPa)
EA - Eastern Atlantic Precipitable Water

Brammer and Thorncroft (2014)
Monitoring AEW-quality in Real-Time

Based on Wave climatology

Top 33%
Mid 33%
Bottom 33%

Trough scale diagnostic

Trough + Environmental Diagnostic

Brammer and Thorncroft (2014)
Wave characteristics vary a lot during the season.

Brammer and Thorncroft (2014)