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Global Climate Models (GCMs)

Developed to study
Climate variability and
change

GCM Forecast system
developed — mainly to
predict ENSO

Now being used to make
seasonal to decadal
forecasts of global SSTs
and other climate
variables

Here we evaluate SST
forecast skill of GCMS for
Large Marine Ecosystems
(LMESs) in US waters
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Large Marine Ecosystems (LMEs)

California
Cuf'rent

LMEs 1: East Bering Sea (EBS), 2: Gulf of Alaska (GoA), 3: California
Current (CC), 5: Gulf of Mexico (GoM), 6: Southeast U.S. Continental

Shelf (SEUS), 7: Northeast U.S. Continental Shelf (NEUS), 8: Scotian Shelf
(SS), 9: Newfoundland-Labrador Shelf (NL), 10: Insular Pacific Hawaiian

(IPH), 65: Aleutian Islands
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Multi-Model Forecasts

Many studies have found that forecasts from multiple models are
better than those from any single model

Here we examine the skill of SST hindcasts from the North
American Multi-Model Ensemble (NMME), phase 1

— Kirtman et al. 2014, BAMS
Monthly Hindcasts during 1982-2002 from 14 models

— All outputona 1°lat x 1° lon grid
Skill estimated by:

— First average ensembles from individual models
— Average models to create a multi-model mean hindcast
— Bias correct hindcasts by removing drift (initialization month, lead)

— Skill of SST hindcasts evaluated relative to 4° Reynolds OI SST data set
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Anomaly Correlation Coefficient (ACC)
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Model

Overall Skill Estimates of SST hindcasts
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Hindcast skill (ACC)
for 3-sub regions
in the California

Current LME
from CanCM4
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A above persistence at 10% level with ACC > 0.5

¥ above persistence at 10% level with ACC < 0).5.
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Processes that influence predictability
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Forecast Skill in the
CC LME for:

a) initialization,

b) lead time

c) forecast
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Sardine population simulated using an age-structured model
— Recruitment dependent on parents biomass and SST

Application of SST forecasts to Pacific Sardines

Current harvest guideline (HG) dependent on previous year’s SST and

biomass in CC LME (HG2)

Use late winter/early spring SST forecast from an NMME model

— Use in Hg (controls fishing rate) to get predicted biomass (HG3)

Use the predicted Biomass to inform the following years biomass (HG4)
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Tomassi et al. submitted to Ecological Applications

HG1 = no 55T

HGZ = past 55T

HG3 = forecast 55T
for fishing rate

HG4 = forecast 55T for
fishing rate and
hiomass forecast



Summary

GCMs have skill in predicting SSTs but varies widely by region,
e.g.
— Gulf of Alaska & California Current reasonably good

— Southeast and northeast US not so much

Skill in LME subregions

— Decreases from north to south in the 3 California Current subregions

Multi-model mean generally the best forecast though not
necessarily for all regions at all time
— Perhaps could be improved by weighting models by skill but non-trivial

— Can use models to understand processes that contribute to
predictability

— Use this information to improve climate forecast systems (including
statistical models)
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