Operational transition of combined ENSO, MJO, and trend influences on temperature and precipitation for Weeks 3-4

Nat Johnson¹ and Dan Harnos²
Stephen Baxter²,³, Steven Feldstein⁴, Jiaxin Feng⁵,⁶, Michelle L’Heureux², and Shang-Ping Xie⁵

MAPP Webinar: Research Transitions for Predictions

¹Cooperative Institute for Climate Science, Princeton University
²NOAA/NCEP Climate Prediction Center
³University of Maryland
⁴Penn State University
⁵Scripps Institution of Oceanography, University of California, San Diego
⁶NOAA Geophysical Fluid Dynamics Laboratory
NOAA CPC is bridging the forecast gap in weeks 3-4

http://www.cpc.ncep.noaa.gov/products/predictions/WK34/

Key Questions:

➤ What are the sources of skill for lead times of 3-4 weeks?

➤ How do we translate that knowledge into operational forecast guidance?
Many studies indicate that the tropics are a key source of extended-range midlatitude predictability.

Specifically, relationships with the El Niño/Southern Oscillation (ENSO) and Madden-Julian Oscillation (MJO) hold promise for weeks 3-4.

Riddle, Stoner, Johnson, L’Heureux, Collins, and Feldstein (2013, *Climate Dynamics*)

A weekly cluster pattern

500-hPa height anomalies (m)

Temperature anomalies (°C)

MJO influence on cluster pattern

Anomalous frequency of cluster pattern (top left) occurrence (%)

The MJO gives information on pattern occurrence 10-25 days in advance

Days that MJO precedes pattern
How do we transition the gains from our research into an operational forecast tool?

- We generate winter North American temperature forecasts for weeks 3-4 based on empirical relationships with MJO, ENSO, and the linear trend (Johnson et al. 2014, *Weather and Forecasting*)

- Simple but transparent
- Translates research into practical guidance for the forecaster
- Produces skillful forecasts
For some initial states of the MJO and ENSO, the skill scores of the weeks 3-4 T2m forecasts from the empirical model are substantially higher than the typical skill scores of dynamical models.
Operational Adaptation

- Extend periods from DJFM to 12 running 3-month periods.

- Shift from ERA-Interim to daily observations:
 - CPC 2-m Temperature (Janowiak, et al. 1999)
 - CPC Unified Gauge-Based Analysis (Xie, et al. 2010)
 - Fourth root taken to increase distribution normality.

- Shift from three-class to two-class forecast.

- Combined product for Weeks 3 and 4.
Weeks 3+4 Heidke Skill Score from combined effects of ENSO+MJO+Trend
Embedded periods of lower/higher skill dependent upon background climate state.

Note even with a weak MJO, skill is present. Active background state not necessary for a skillful forecast (due to trend and nonlinearity of ENSO).
Temperature

- Top left: Forecast (from 6/19)
- Mid/Bot left: Forecast tool output
- Bot right: Observations (7/4-17)

Coherence between statistical tool and forecast, despite tool being unavailable to forecasters.

Forecast and tool verified well.
Precipitation

- Top left: Forecast (from 6/19)
- Mid/Bot left: Forecast tool output
- Bot right: Observations (7/4-17)

Less agreement between tool and forecast made without it.

Forecast and tool performance comparable.
Week 3-4 Forecast Guidance

- **Dynamical:** CFSv2, ECMWF, JMA
 - Geopotential heights
 - T2m & Precipitation anomalies
 - T2m & Precipitation probabilities

- **Statistical models:**
 - ENSO/MJO phase model
 - Constructed analog
 - Coupled linear-inverse model

- **Observations:**
 - ENSO & MJO
 - Sea Ice
 - Soil Moisture
 - Tropical Cyclones
Week 3-4 Forecast Guidance

- **Dynamical:** CFSv2, ECMWF, JMA
 - Geopotential heights
 - T2m & Precipitation anomalies
 - T2m & Precipitation probabilities

- **Statistical:**
 - ENSO/MJO phase model
 - Constructed analog
 - Coupled linear-inverse model

Week–3/4 2m Temperature Probabilities for ONI=nino and RMM=0 Season Centered on OCT

<table>
<thead>
<tr>
<th>OLR/WND200</th>
<th>SST/Z20/WND850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentad 5 forecast: 01-05 Nov 2015</td>
<td>Pentad 5 forecast: 01-05 Nov 2015</td>
</tr>
<tr>
<td>Pentad 6 forecast: 06-10 Nov 2015</td>
<td>Pentad 6 forecast: 06-10 Nov 2015</td>
</tr>
<tr>
<td>Pentad 8 forecast: 16-20 Nov 2015</td>
<td>Pentad 8 forecast: 16-20 Nov 2015</td>
</tr>
</tbody>
</table>

Projected skill < 0.6
Projected skill < 0.95
Projected skill = 0.6
Projected skill = 0.05
Projected skill = 0.85
Projected skill = 0.95
Projected skill = 0.91
Projected skill = 0.05
Projected skill = 0.92
Projected skill = 0.6
Projected skill = 0.05
Projected skill = 0.85
Projected skill = 0.94
Week 3-4 Forecast Guidance

- **Dynamical:** CFSv2, ECMWF, JMA
 - Geopotential heights
 - T2m & Precipitation anomalies
 - T2m & Precipitation probabilities

- **Statistical:**
 - ENSO/MJO phase model
 - Constructed analog
 - Coupled linear-inverse model

- **Observations:**
 - ENSO & MJO
 - Sea ice
 - Soil moisture
 - Tropical cyclones
Statistical guidance emphasizing the subseasonal ENSO footprint was strongly utilized. This guidance, along with the dynamical consensus leads to a more confident precipitation outlook relative to temperature. Above-median precipitation is favored
Conclusions

- A simple empirical model for probabilistic T2m and precipitation forecasts based on the initial state of the MJO and ENSO produces skillful Week 3-4 forecasts over North America across various seasons and climate states.

- This empirical model has been undergone successful R2O prior to CPC’s experimental Week 3-4 forecast product going live, and has become a key component of the forecasting process.

- Research team member participation in the Week 3-4 forecasting process has aided statistical tool interpretation by forecasters, and led to feedback for subsequent product development in an O2R sense.