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Outline:
1) Extremes were triggered by anomalous synoptic patterns
2) Cloud-Radiation-PWV positive feedback on 2007 low SIE

3) Progress made by UND group for MAPP project
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The summer of 2007 caught the attention of the Arctic
research community because September sea-ice extent
plummeted to a record minimum, it was 35% below the 1979-
2010 average.

Although most efforts have been devoted to understanding the

2007 low, a contrasting high September SIE in 1996 might

share some related but opposing forcing mechanisms.



Objectives

1. Explore the detailed insights about the underlying
mechanisms driving these two contrasting extreme
events (2007 and 1996), and compare their
similarities and differences with respect to the major
contributing factors and different atmospheric

conditions.

2. Investigate the positive Cloud-Radiation-Water
vapor Feedback on the 2007 summer low using US
National Snow and Ice Data Center (NSIDC) and

NASA MERRA




September Sea-ice Extent Comparison

Sea Ice Extent
Sep 2007

Major

difference is
over Laptev,
East Siberian,
and Chukchi
Seas

National Seow and ice Data Conder, Boulder, CO

m median W median

ice edge
Total extent = 4.3 million sq km Total extent = 7.9 million sq km

Therefore, we focus on the area of Laptev, East Siberian and
Chukchi seas (70-90 °N, 90-210 °E) and define it as the Area Of

ice edge

Focus (AOF) in this study.



September Sea-lce Concentration Comparison

Sep 2007 Sea Ice Concentration Anomaly
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-26.7% below climate mean +17.0% above climate mean

The area of Laptev, East Siberian and Chukchi seas (70-90 °N,
90-210 °E) is defined as the Area Of Focus (AOF) in this study.




Atmospheric mL 2007 (Low)
anomalies over AOF ? L MSLP
During Summer 2007 : '

=» A persistent anticyclone was
positioned over the Beaufort
Sea, coupled with an area of

low pressure over the Eurasia N Zall V
region . S o k. B

=» Under this synoptic pattern,
strong positive anomalies in
meridional winds (southerly) .
are evident over the AOF, SAT
which transports warm o
(positive anomaly of SAT)
and moist air (positive
anomaly of PWV) from the ' )
North Pacific. - 2 \AY
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= CF over AOF is 7.1% higher
than climate mean

= NET LW flux is +10 Wm-?
=>NET SW flux is -4.2 Wm-2

=» Total NET surface energy
budget = (NET LW+SW)-
(SH+LH) = +7 Wm-2,

Indicating that 7 Wm= more
heat than its climate mean value
was absorbed by Arctic oceans
over the AOF during the
summer 2007. This extra 7 Wm-2
has partially contributed to the
1.3 K increase in SAT and the
low September sea-ice extent in e NET
2007. .. A
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Summer 1996 is reversed




Inter-annual-\Variations of atmospheric anomalies

S I E September Sea Ice Extent Coverage JJAS Mean Cloud Fraction Anomaly
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2012 new record low In SIE

Average Monthly Arctic Sea Ice Extent Sea Surface Temperatures
August 1979 - 2012 August 2012
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It was mainly triggered by a super storm over the
central Arctic Ocean in early August that caused
substantial mechanical ice deformation on top
of the long-term thinning of an Arctic ice pack
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2012 Summer

= The synoptic and wind
patterns in 2012 were
significantly different from
those in 2007.

= Low pressure systems
covered the entire Arctic
with two centers, resulting
in weak anomalous
northerly winds over most
of the AOF and the Fram
Strait.

= Although the patterns
and signs of the anomalies
of the atmospheric
parameters in 2012 are the
same as those in 2007,
their magnitudes are much
smaller.
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Summary I: two extreme years

1) The low Sea Ice Extent (SIE) in 2007 was
associated with a persistent anticyclone over the
Beaufort Sea coupled with low pressure over Eurasia,
which induced anomalous southerly winds. Ample
warm and moist air from the North Pacific was
transported to the AOF and resulted in positive
anomalies of cloud fraction (CF), precipitable water
vapor (PWV), surface LWnet (down-up), total surface
energy and temperature.

2) In contrast, the high SIE event in 1996 was
associated with a persistent low pressure over the
central Arctic coupled with high pressure along the
Eastern Arctic coasts, which generated anomalous
northerly winds and resulted in negative anomalies of
above mentioned atmospheric parameters.




Part IlI: Cloud-Radiation-PWV

feedback on

We hypothesize that the onset of the

sea-ice extent was triggered by the
large-scale atmospheric circulation
anomaly during spring, and later on
enhanced by a positive cloud-radiation-PWV
feedback process over the AOF during the
summer and early autumn of

Now we want to improve this hypothesis
using seasonal variation and daily
anomalies from
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Seasonal Varlatlons of SIE and atmospherlc variables over the AOF
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LW During Spring months of 2007,

=»strong southerly winds
occurred, which brought more

.- warm and moist air to the AOF.

=» However, the CF, LW and
SW were below their climat.
Values because most of Arctic
Ocean surfaces were still

- covered by sea ice during

spring, thus there are minimal
interactions between ocean and
atmosphere

=»SH flux in April was 8 Wm-2

" lower than the climatology (less

upward flux, resulting in 3-5
Wm-2 more total surface energy
(down in) than the climatology .
= This 3-5 Wm-2 extra energy

~ during spring months, as well
as 10 Wm extra energy in
June, used to trigger the onset
of 2007 low.




Correlations of dally anomalies between SIC and atmospheric parameters

r (kg/m’)

Cloud Fraction (%)

10-m Meridional Wind Speed (mys")

2-m Air Temperature (K)

Total Water Vapo

07J’JAS.5 sa Ice Concentration An
|7u-JoN. 90-210E]

e SIC

NET SFC LW FLUX (W/m’)

Jul
2007 JJAS 2-m Air
[70-90N, ¢

NET SEC SW FLUX (W/m’)

LTS HA AR b R A Mdadaid SR MR LA A b
E p= >
E r=-0.80 S-day centercd

Energy Flux (W/m’)

(Wim')

e Heat Flux

nt Heat Flux (W/m')

Lates

MM/\

F r=0.52
Y

2007 JJAS NFT .SF( LW FLUX Anomal;
-90N, 90-210E]

r= -0.61

2007 JJAS Tota
I'l \l

Flux Anomaly

- NET

. S
= Q0.5

sk
iSdun 2Sdun Sl s-aul SSew  avser
ot TO-9 S I I

4 r= 0.49 MERRA Reans

't ,_/\/\ /\ :

2 ;./ \/!

4 e

s i
.............................................................................................
1 13-8e

’ i
2007 JJAS Latent Heat Flux Anomaly
[70-90N. 10E]

T L H

=» The high correlations
(0.58-0.79) of anomalies
between SIC and V, SAT,
PWYV, CF, LWnet and
SWhnet further proved that
meridional winds, water
vapor, clouds, and
radiation are indeed
having significant impacts
on the SIC variations.

=» The increased SAT
along with a positive
cloud-radiation-PWV
feedback amplified the
signal initiated by the
atmospheric circulation
anomaly, accelerated the
sea-ice retreat during the
summer of 2007.




Summary Il (feedbacks)

The proposed hypothesis regarding the triggering and enhancing mechanisms of
the Arctic sea-ice retreat during the summer of 2007 has been improved as

=» The onset of the 2007 low sea-ice extent was triggered by the large-scale
atmospheric circulation anomaly during the spring months of 2007.

=» Strong southerly winds brought warm and moist air from the North Pacific,
which not only initiated sea-ice melting, but also increased PWV and formed more
clouds over the AOF, particularly over open seas.

=»\When CF was high and Arctic surfaces were covered by snow and ice,
particularly during the onset of sea-ice melting (May-June), the cloud-greenhouse
(LW) effect overwhelmed the cloud-albedo (SW) effect, producing a positive cloud
radiative effect on the surface radiation budget.

=» Downwelling LW flux increased significantly with increased PWYV, generating
another positive feedback to increase surface temperature and enhance sea-ice
retreat.

=» Later on, more sea-ice was melted, additional SW (and LW) radiation was
absorbed by open seas to increase surface temperature, and more water vapor
evaporated to form more clouds, which further enhanced the positive cloud-
radiation-PWYV feedback.




Progress made by UND group

Arctic clouds and Radiative Forcing by Yiyi
Huang

Comparison of GPCP precipitation with. Q2
precipitation over the CONUS by Wenjun Cul
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Assessment of reanalyzed Arctic Clouds and
Radiative Forcing using Satellite Observations
by Yiyi Huang

Arctic Cloud Fraction (2000/03-2012/02)
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Compared to observed CF, all ;&;gﬁg)
reanalyzed CFs ( except for JRA25) 0.2
are much higher during winter.

MERRA (72.8%)
20 | | | | | |
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Cloud Fraction(%)

Time Period : 03/2000 - 02/2012
Area of Interest: Arctic (70-90°N)
Satellite Results: CERES-MODIS for cloud fraction, CERES-EBAF for
radiative fluxes at TOA and surface
Reanalyses: Monthly means from JRA25, 20CR, CFSR, ERA-Interim
and MERRA 17




Comparison of GPCP precipitation with Q2

precipitation over the CONUS by Wenjun Cui
Dataset: GPCP-1DD, NEXRAD Q2 Precipitation Product
Time Period: 2010-2012
Methodology: monthly mean
Selected Region: 6 tiles in Central and Eastern US

Q2 Mean = 991.0 [mm)]

' ~ GPCP Mean = 971.5 [mm]
60 - o .

: 600 25 : : il -80
& g g g g g z g g & g g g g g Z

Fig. 1. Spatial Distribution for Annual Mean Precipitation ¢




Scatterplot of monthly mean precipitation
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The Evaluation and Intercomparison of Radiative Forcing and
Cloud Fraction in Recent Reanalyses over the Entire Arctic using
Satellite Observations
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Arctic ( 70 - 90°N ) Surface Radiation Budget (

03/2000 - 02/2010)
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Datasets

The monthly mean sea-ice extent and SIC
were provided by the US National Snow and
Ice Data Center (NSIDC) using Nimbus-7
SSMR and DMSP SSM/I Passive Microwave
Data and Near-Real-Time SSM/I Polar Gridded
SIC dataset.

Clouds, Water vapor, Radiation and
Atmospheric variables were provided by
NASA MERRA reanalysis




